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ABSTRACT

Reading is foundational for educational, employment, and economic outcomes, but a persistent
proportion of students globally struggle to develop adequate reading skills. Some countries promote
digital tools to support reading development, alongside regular classroom instruction. Such tools
generate rich log data capturing students’ behaviour and performance. This study proposes a dynamic
cognitive diagnostic modeling (CDM) framework based on restricted latent class models to trace
students’ time-varying skills mastery using log files from digital tools. Unlike traditional CDMs
that require expert-defined skill-item mappings (Q)-matrix), our approach jointly estimates the Q-
matrix and latent skill profiles, integrates log-derived covariates (e.g., reattempts, response times,
counts of mastered items) and individual characteristics, and models transitions in mastery using a
Bayesian estimation approach. Applied to real-world data, the model demonstrates practical value in
educational settings by effectively uncovering individual skill profiles and the skill-item mappings.
Simulation studies confirm robust recovery of ()-matrix structures and latent profiles with high
accuracy under varied sample sizes, item counts and different sparsity of (J-matrices. The framework
offers a data-driven, time-dependent restricted latent class modeling approach to understanding early
reading development.

Keywords Cognitive Diagnostic Models - Deterministic Input, Noisy “And” Gate (DINA) Models - Educational Game
Application - Log Files - Q-matrix Estimation

1 Introduction

Early literacy is widely recognized as essential for educational success and lifelong development [1]]. Yet, despite
substantial investments in literacy education, recent data indicate persistent global challenges. For example, according
to the Progress in International Reading Literacy Study, 86% of fourth-grade pupils in England reached the Intermediate
International Benchmark, compared to 81% in the United States, 37% in Brazil, and only 9% in South Africa,
highlighting substantial global disparities in basic literacy achievement [2} 3]]. To address gaps in literacy skills, some
countries advocate the integration of evidence-based digital reading support in classrooms, to support students with
specific education needs and English language learners [4]. Building on the demonstrated benefits of individualised and
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real-time feedback in digital learning environment [3]], this study addresses the critical need to empirically evaluate how
digital reading tools can support early literacy development. Although these educational technologies are now widely
adopted, relatively few studies have utilised the rich log files they generate to capture fine-grained learning processes.
Such log files enable detailed tracking of student interactions, such as response times and learning trajectories, which in
turn facilitates statistical modeling of students’ learning development.

Many existing approaches to modeling students’ learning development employ latent variable frameworks, in which
unobservable proficiencies are inferred from observable item responses. A widely used class of such models in
educational and psychological assessment is the restricted latent class models, also known as cognitive diagnostic
models (CDMs), originally proposed by [6] and further termed by [7]. [6] initially referred to these models as binary
skills models, which classify students into one of 2% latent profiles based on their mastery or non-mastery of skills
(also called “attributes”), where K denotes the number of skills of interest. These models typically account for guessing
(responding correctly by chance despite lacking mastery) and slipping (responding incorrectly despite possessing
the skill) behaviours [8, [7]. CDMs provide diagnostic feedback for teachers to help them make informed decisions
regarding targeted instruction or interventions [9].

While CDMs and their variants have demonstrated effectiveness across diverse applications, traditional implementations
face several limitations that researchers have sought to address. First, these models are typically restricted to static, single
time point assessments. To overcome this constraint, researchers have developed various extensions to capture learning
over time. Different approaches have integrated CDMs with transition models to track temporal skill development.
For example, latent transition analysis (LTA; [10]) combined with CDMs can assess shifts in mastery across repeated
assessments [[11]]. Building on this framework, [12]] introduced a bias-corrected three-step method for latent transition
CDMs to evaluate covariate effects. Several studies have incorporated hidden Markov models with CDMs to track
skill acquisition in computer-based spatial learning interventions [13| [14} [15| [16]. More recently, [17] proposed a
Bayesian longitudinal extension of restricted latent class models - structured as a directed graphical model [18]] - which
accommodates polytomous attributes and allows covariates to influence transitions between latent states.

Second, CDMs incorporate a design matrix, known as the (J-matrix, which specifies the mapping between the test items
and the attributes of the underlying skills. Each row of the (Q-matrix corresponds to an item and each column to a skill,
with entries of 1 indicating that the item requires the skill and O otherwise. Although the -matrix itself only defines
the item-skill relationships, the complete CDM framework uses this structure to generate diagnostic inferences about
individual skill mastery. However, a misspecified (J-matrix can significantly bias parameter estimates and diagnostic
classifications [19]]. Many applications of CDMs rely on a predefined @Q-matrix provided by domain experts [13] 9], or
focus on validating and modifying pre-specified expert (Q-matrices ([20]; [21]; [22]]). To overcome the limitations of
such confirmatory approaches, researchers have developed data-driven, exploratory estimation methods. For instance,
[23]] proposed a regularised estimator for the (Q-matrix in a cross-sectional setting, whereas [24] developed a Bayesian
approach. [17] compared their longitudinal model’s ()-matrix estimates to a prior confirmatory analysis by [25]]. Prior
work has furthermore established identifiability conditions for the Q-matrix [23} 26} 24]].

Third, most CDMs assume that students’ attributes are binary, which may be overly simplistic for domains such as
reading development, where a broader range of proficiency levels are necessary to sensitively capture ability. Polytomous
skill models have been developed to address this limitation, incorporating partial response accuracy [27, 28| [29] or
jointly modeling response accuracy and response times to account for accuracy-speed trade-offs [30, 31} 132]]. These
polytomous approaches have been subsequently adapted to dynamic frameworks to track learning progression over
time.

Finally, while there is growing interest in integrating log files into CDMs, most existing applications either target
different populations or use alternative modeling approaches. For example, [33]] employed machine learning techniques
on gameplay data to detect reading difficulties. Other studies have explored process data in university-level reading
subskills using CDMs [34]], or adult problem-solving skill within technology rich environments [35]. Although these
studies illustrated the value of log files, the application of CDMs to log files in early literacy development remains
limited. Yet, log files provide opportunities to track not only response correctness but also dynamic insights into
time-related learning processes, such as response times, item durations, and session timestamps. This represents a
significant missed opportunity to understand learning processes in a finer temporal grain, particular in real-world digital
environments designed for young learners.

Our approach in this study was motivated by our use of digital learning log files, which included multiple time-points,
an unknown Q-matrix, log-derived behaviour indicators and individual characteristics for each student. This resulted in
a novel framework for time dependent restricted latent class modeling that integrated the various extensions discussed
above into a single unified approach. While previous research has addressed individual aspects, such as temporal
dynamics, data-driven (-matrix estimation, or integration of log-derived covariates and individual characteristics,
our model synthesised these advances within one comprehensive framework. We jointly estimated all components,



Dynamic CDMs in Digital Learning A PREPRINT

Figure 1: The hierarchical structure of the log files. The left column shows the full structure of Boost Reading (skill
families, games, levels, and attempts). The right column highlights the subset selected for analysis, including two skill
families, one game from each, and relevant levels and attempts.
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including the item-skill relationship (@Q)-matrix), time-varying latent skill profiles, and transition parameters, within a
single integrated system. The ()-matrix was thus inferred directly from the data, based on the dependence structure
among item responses rather than assuming that it was known. Simultaneously, the framework modeled the dynamic
evolution of skills over time while incorporating rich log-derived behavioural indicators and individual characteristics,
including reattempts, response times, counts of mastered items, demographics, and game and learning characteristics,
leveraging the full information available in digital learning environments.

The remainder of this paper is structured as follows. Section 2 provides the background and description of the digital
learning data used in our analysis. Section 3 details our methodological framework, including the full specification of
the time-dependent restricted latent class model. In Section 4, we present an empirical study applying our model to
real-world educational data, and Section 5 evaluates the model’s performance through simulation studies. Section 6
discusses the implications of our findings, limitations, and directions for future research. Finally, Section 7 provides a
summary of our contributions and their significance for both statistical methodology and educational practice.

2 Data Background

The data for this study originate from the Boost Reading digital program, developed by Amplify, a U.S.-based education
technology company (https://amplify.com). Founded in 2000, Amplify now reaches more than 5,000 school
districts, serving over 15 million students in 2024. Amplify offers a wide range of curriculum programmes in literacy
(Boost Reading is one of them), science, and mathematics, providing schools and educators with digital tools to
support effective teaching and learning. Boost Reading (previously Amplify Reading) is a research-informed classroom-
based digital reading supplement consisting of multiple literacy-focused games targeting core reading skills such
as phonological awareness, decoding, vocabulary, and sentence comprehension. These games are categorised into
distinct research-informed defined skill families, each aligned with a foundational reading skill, specifically designed
for students in kindergarten through 5th grade (K-5). The diagram in Figure|l{summarises the hierarchical structure of
the log files from Boost. The left column displays the complete structure (11 skill families, 48 games, levels, attempts),
while the right column specifies the subset analysed in this paper, focusing on decoding and vocabulary skill families
and one game from each. The impact of Boost games and student interaction in K-2 is reported in [36].

Within each skill family, multiple games include different levels. Students achieve either “mastery” or “no mastery” at
each level, where mastery is defined as achieving approximately 80% accuracy on the items they engage with that they
can either get right or wrong. Students may attempt each level an unlimited number of times. However, after three
consecutive non-mastery attempts for a level students are directed to other games to support related skills before they
reattempt the challenging levels of that game. Students do not choose which game or level to engage with; instead,
access to games and levels is determined by their initial ability and on-going in-game performance. Within each game,
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levels are unlocked sequentially, progressing from foundational to advanced levels. As a result, students follow different
learning trajectories and encounter varying sets of levels. In addition to detailed log files for specific games, we also
obtained students’ initial reading performance measured by the Dynamic Indicators of Basic Early Literacy Skills
(DIBELS; [37]]), administered prior to the Boost program and used for placement.

3 Methodological Framework

Using the data structure outlined above, we developed a comprehensive framework for analysing student learning
trajectories in digital environments. Our approach addressed the limitations of traditional CDMs by jointly estimating
three key components: (1) the underlying item—skill mappings (@-matrix), (2) item-specific parameters and individual
skill profiles across time points, and (3) the effects of log-derived covariates and individual characteristics on both
initial skills mastery and their transitions.

3.1 Model Overview

The proposed model integrated cognitive diagnostic measurement with temporal dynamics in analysing how students’
proficiency in specific skills evolved over time. At each time point ¢, student 7’s observed responses to learning items
were denoted by Y; ; = (Yi14,...,Yi s¢), where Y; ; ; € {0, 1} indicated an incorrect or correct response to item j.
These observed responses were governed by latent skill mastery patterns and item-specific parameters, as detailed in the
following subsections.

3.2 Cognitive Diagnostic Model

CDMs are restricted latent class models designed to infer students’ mastery of specific skills from their ob-
served responses. Under these models, each student ¢ at time ¢ is characterised by a binary attribute vector
a;r = (1,4, k1), where a; 1 ¢ € {0, 1} indicates mastery (1) or non-mastery (0) of attribute k.

Among various CDMs, we employed the Deterministic Inputs, Noisy "And" Gate model (DINA; [6} 38]). The DINA
model assumes a non-compensatory structure, meaning that students must master all required attributes to successfully
complete an item. Formally, the ideal response indicator 7); ; ; for student ¢ on item j at time ? is given by:

K
Qjn
mige = [ st (M
k=1

where 7); ; ; = 1 indicates full mastery of all required attributes, and 7; ; ; = 0 otherwise.

To account for response uncertainty, the DINA model incorporates two parameters: slipping (s; ;) and guessing (g;,;).
The probability of a correct response is modeled as:

P(Yije=1]0;:,Q)=(1— sj,t)"i"f'tg;,;ni’j’t, 2
st =Pije=0[ni0=1), gje=P ije=1|nij:=0). 3)

Thus, a student who has mastered all required attributes may still respond incorrectly due to slipping (s;,.), while a
student lacking mastery may respond correctly by guessing (g, ¢). We selected the DINA model for its straightforward
interpretations, smaller sample size requirements for accurate parameter estimation [39], and its flexibility for extension
to more general CDMs.

3.3 The Q-Matrix

A critical component of our framework is the (-matrix, a binary matrix that specifies which skills are required for each
item:
Qi = 1 if item j requires skill &,
%70 otherwise.

Unlike many applications where this structure is pre-specified by domain experts, in Boost Reading, the mapping
between items and skills E] is not explicitly defined. We therefore treated each element @);; as a parameter to be

Here, “skill" is used differently from the definition used in Boost Reading.
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estimated from the data. Table 3] presents an example of an estimated ()-matrix from our application. The structure of
the (Q-matrix plays a critical role in model identifiability [40]. To ensure proper estimation, we implemented several
established identifiability constraints. Under the DINA model, a ()-matrix is considered complete if it contains a K x K
identity submatrix Ix up to column permutation [20]. Following [23]] and [26], we fixed two such I submatrices (i.e.,
2K single attribute items) in each (); when J exceeded 15 items. For the remaining elements, we imposed a structured
sparsity pattern. Each item was constrained to measure one or two attributes, and each attribute had to be measured by
at least three items [41]]. The global sparsity of the estimated ()-matrix is quantified by:

number of non-zero entries in Q; — 2K

0:
Jx K

3.4 Transition Model with Covariates

An important aspect of the modeling framework is how students transition between mastery states over time, and how
these transitions are influenced by learning behaviours captured in log files and individual characteristics. We employed
logistic regression models to link covariates Z to both initial skill mastery and transitions between states.

The initial attribute mastery probabilities at the first time point are modeled as:

c
logit (P(cvik1=1 = 1)) = Bok + Y Br.cZic, “
c=1

where 3y i represents the baseline log-odds of mastering attribute k£ initially, 3 . quantifies the effect of covariate c
on this probability, and Z; . denotes the value of covariate c for student ¢. For subsequent time points, we modeled
transitions between latent attribute states from time ¢ to ¢ + 1 as:

c

logit (P(a; k41 =1 aier = 0)) = Yo1,6,0 + Z%l,k,czi,c, 5)
c=1
c

logit (P(c; k41 =0 aier = 1)) = Y10,k,0 + Z%o,k,czi,c, (6)
c=1

Here, v01,x,0 and 701 %, quantify the baseline and covariate effects on transitioning from non-mastery to mastery
of attribute k, while 71,0 and 7y10,x,. quantify the effects on transitions from mastery back to non-mastery. By
incorporating log-derived covariates and individual characteristics, our model was able to identify which specific
covariates were most predictive of skill acquisition and retention.

The relationships between covariates Z, latent attributes «, and observed responses Y across time points are summarised
in Figure 2]

Figure 2: The relationships between covariates Z, latent variables «, and responses Y across three time points.

Z(t—1—1) Z(t — t+1)
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3.5 Inference Procedure

To estimate all model parameters simultaneously, we employed a Bayesian approach using Markov Chain Monte
Carlo (MCMC). This enabled us to quantify uncertainty in all parameters while incorporating prior knowledge where
available.

3.5.1 Prior Specifications

To encourage sparsity in the ()-matrix, we adopted a hierarchical Bernoulli-Beta prior:
Qjx ~ Bernoulli(§), @)
6 ~ Beta(a, 8), 8)
where the prior mean o%s-/a equals the non—zero proportion of the true ()-matrix and the concentration defined as o + 3.

This structure permits the data to inform the overall sparsity level. For the empirical analysis, the Beta(24, 6) prior
had a mean of 0.8 and a variance of approximately 0.0052, placing roughly two-thirds of its mass between 0.65 and
0.92. Additionally, we conducted a sensitivity analysis with alternative priors reported in supplementary material A
(posterior means of g and s differed by less than 0.04), finding that Beta(24, 6) provided the best balance between
model fit and interpretability of the resulting (J-matrix structure. This prior is informative enough to guide estimation
toward meaningful structures while remaining flexible enough to adapt to the data.

To further ensure identifiability, we fixed two K x K identity submatrices in each (); when J > 15, following
established procedures [23} [26]]. The remaining elements were estimated from the data, with the constraint that each
attribute was measured by at least three items to satisfy sufficient conditions for identifiability [41].

For the guessing and slipping parameters, we used weakly informative priors following [42]:
gjt ~ Beta(1,1) )
sj+ ~ Beta(1,1) (10)
We initialised these parameters with draws from Uniform(0, 0.3) to reflect the empirical observation that item-level
guessing and slipping parameters rarely exceed 0.30 in applied settings [43),/44]. For the regression coefficients in the
attribute and transition models (i.e., B3z, Y01, and 71¢), we specified weakly informative priors assuming a standard

normal distribution, N (0, 1). In order to test the sensitivity of the choice of priors, we varied them and re-ran the analysis.
In doing so, we found little difference in both classification performance and posterior densities of hyperparameters.

3.5.2 Joint Posterior Distribution

The joint posterior distribution of all parameters given the observed data is:

T
P(Q’g’saﬁ;’mla’hoy@l’-~-a04T | Yla"'aYTaZ) O((HP(Yt | Q7gtastaat))'
t=1

T
(HP(Oét \ at—177017'710azt—1))'

=2
P(ay | B,7Z) - P(Q)-
P(g,s) - P(3,701;710) (11)

The first component, P(Y: | Q, g, St, ), represents the likelihood of observed responses at time ¢ based on the DINA
model defined in Equation |2} The second component, P(«; | az—1, Yo1, Y10, Zt—1), captures the transition probabilities
between attribute states from time ¢ — 1 to ¢ as defined in Equations and@ The third component, P(a; | 8, Zo),
models the initial attribute mastery probabilities at time ¢ = 1 using the logistic regression in Equation[d] The remaining
terms, P(Q), P(g,s), and P(53, 01, Y10), represent the prior distributions for the -matrix, the guessing and slipping
parameters, and the regression coefficients, respectively, as specified in the previous section.

3.5.3 Computation

The model was implemented using JAGS (Just Another Gibbs Sampler) through the R package RJags [45], guided by
the approach in [46]]. For each model, we ran three parallel chains with different starting values. After a burn-in period
of 5,000 iterations, we collected 10,000 samples from each chain and assessed convergence using the potential scale

reduction factor (R) and trace plot inspection.
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The complete code for reproducing all results in this study is available on GitHulﬂ Additionally, our research plan has
been preregistered via the Open Science Framework at https://osf.io/bmv3r,

4 Empirical Study

4.1 Data

We selected two games that support the development of two core components of reading comprehension: decoding
skills, which support word recognition, and vocabulary, which supports language comprehension [47]. Theoretically,
word recognition and language comprehension are considered as separate constructs, and earlier analysis of a related
dataset confirms that student engagement and performance on each are separable [48]. In our empirical study, we
treated decoding and vocabulary as two target attributes. To ensure sufficient engagement and a balanced sample, we
included 263 students who had interacted with both games corresponding to these skills. In our analysis, we examined
the beginning of Year 1 and Year 2 of the study dataset (7" = 2 in Equation [IT]). We extracted six responses per time
point from the student log files from the first level that they interacted with for the decoding game (items 1-3) and for
the vocabulary game (items 4-6). The items and levels differed by individual student due to different initial start points
and in-game trajectories. Detailed descriptions of the game-level content are provided in the Appendix, and exploratory
data analysis on level engagement variability (presented in supplementary materials B) confirmed that the majority of
students engaged with a consistent set of comparable game levels, thereby supporting the simplification adopted in our
study.

To control for individual differences, we considered 12 covariates informed by prior research [48]]. These comprised six
log-based variable—average number of attempts, number of levels mastered, and average response times—calculated
separately for each of the two games, as presented in Table [T Additionally, we included six individual character-
istics—four demographic variables (gender, race, English language status, and special educational needs) and two
variables related to game and learning characteristics (initial literacy ability and engagement group)—as summarised in
Table 2] The engagement group variable reflected students’ overall participation across multiple literacy games in Boost,
based on a set of theory- and data-driven engagement indicators [48]. That study identified nine distinct engagement
profiles, and students in our sample were assigned to three of these profiles. Specifically, students in the high vocabulary
group engaged more with games targeting vocabulary skills, those in the high decoding group engaged more with
decoding-focused games, and the balanced group demonstrated comparable engagement across both skill families.

Table [T] presents the summary statistics for the log-based variables. In each academic year, students completed six items
in our sample, comprising three levels per game, with a maximum of three levels mastered in each game. Compared to
the vocabulary game, students in the decoding game exhibited slightly higher average levels mastered, longer average
response times, and lower variability across measures. In contrast, students showed higher average reattempts in the
vocabulary game than in the decoding game, suggesting greater effort was needed in the vocabulary game.

Table 1: Summary statistics for log-based continuous variables.

Note: NLM = average number of levels mastered; REAT = average number of reattempts; RT = average response time.
For REAT and RT, individual means were first computed across game levels for each student and then averaged across
the entire sample. For NLM, the number of levels mastered was first counted at the individual level before calculating
the group average.

Variable Mean (SD) Quantiles: (1st, 3rd)
Log-based Variables

NLM decoding game 1.87 (0.90) (1, 3)

NLM vocabulary game 1.76 (0.93) (1,2)

REAT decoding game  2.14 (1.41) (1, 3)

REAT vocabulary game 2.41 (1.55) (1, 3)

RT decoding game 2.14 (0.58) (1.78,2.47)

RT vocabulary game 1.80 (1.25) (1.13,2.06)

As shown in Table 2] approximately half of the students belonged to the high vocabulary group. Most students in this
group were non-English language learners (non-ELL) and did not have special education needs (non-SEN). The gender
distribution was relatively balanced, with a slightly higher proportion of male students. Regarding initial literacy ability,
students were distributed across different benchmark levels on DIBELS, with a notable proportion classified as Well
Below Benchmark or At Benchmark defined by Amplify criteria. The sample included students from diverse racial and

*https://github.com/Yawen-Ma/Q-matrix.git
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ethnic backgrounds, with Hispanic or Latino, White, and Black or African American students comprising the largest
groups.

Table 2: Summary statistics for categorical demographic and game and learning characteristics variables. Values
represent the number of students in each category, with the corresponding proportion.

Note: ELL = English language learner; SEN = special educational needs; B = Black or African American; H = Hispanic
or Latino; M = Multiracial/Other; W = White; NS = Not Specified; Al = American Indian; AN = Alaskan Native; AS =
Asian.

Variable Summary

Demographic Variables

ELL non-ELL: 196 (74.5%); ELL: 67 (25.5%)

SEN non-SEN: 233 (88.6%); SEN: 30 (11.4%)

Gender Female: 117 (44.5%); Male: 146 (55.5%)

Race AS: 15 (5.7%); B: 34 (12.9%); H: 63 (24%); M: 27 (10.3%);

W: 58 (22.1%); NS: 47 (17.9%); Other (Al & AN): 3 (1.2%);
Missing: 16 (6.1%)

Game and Learning Characteristics

Engagement Group High Vocabulary Group: 142 (54%);
High Decoding Group: 26 (9.9%);
Balanced Group: 95 (36.1%)

Initial Literacy Ability Above Benchmark: 53 (20.2%); At Benchmark: 57 (21.7%);
Below Benchmark: 38 (14.4%);
Well Below Benchmark: 75 (28.5%); NA: 40 (15.2%)

4.2 Model Diagnostics

We applied the proposed model to the dataset and assessed convergence following [49]. From 60,000 total iterations (3
chains with 20,000 for each), the first half were discarded as warm-up. Diagnostics indicated the maximum potential
scale reduction factor (R) with 1.018. The minimum effective sample size (ESS) were 5,661— above the recommended
threshold of 400—indicating efficient sampling. Running time for the empirical analysis (MCMC chain length =
30,000) was approximately 25 minutes, conducted on a MacBook Pro (13-inch, M1, 2020) equipped with an Apple M1
chip (8-core: 4 performance and 4 efficiency cores) and 16 GB of unified memory.

4.3 Estimation and Evaluation of the Q-Matrix and Item Parameters

The estimated Q-matrices at Time 1 and Time 2 are shown in Table[3] At Time 1, the Q-matrix aligned with the test
design: Items 1-3 targeted decoding, and Items 4—6 targeted vocabulary, reflecting the game structure. Note that the
game structure was treated as unknown when we estimated the model, adding evidence that the model was able to
correctly identify the item-skill relationship. At Time 2, Items 2, 3, 4, and 6 loaded on both decoding and vocabulary,
indicating increased skill integration.

To evaluate the estimated Q-matrices, we adopted the proportion of variance accounted for (PVAF), a criterion based on
the G-DINA discrimination index (GDI; [50]). For item j, let K J* = Zszl ;1 denote the number of required attributes,
and let aj; denote the lth reduced attribute pattern among the L = AN possible combinations. The GDI is then defined
as the variance of success probabilities across these patterns given a possible g-vector q:

*
2%

Gla) =Y pleg; | a) [P(Y =1 aj;q) — P(Y =1]q)]”,
=1

where the average success probability is:

.
2%

P(Y=1|q) =) plaj)P(Y =1]aj;q).
=1
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The PVAF was computed as the ratio of the GDI for a particular g-vector to the maximum GDI. As noted by [50,
p- 261], the maximum GDI is achieved when all the attributes are specified. Thus, the PVAF expresses how well a
candidate g-vector accounts for the variability in success probabilities relative to this maximum. In our analysis, two
Time 1 items met revision criteria (PVAF < 0.8). After modification, both exceeded the threshold: Item 3 was updated
to include vocabulary, and Item 5 to include decoding. No changes were indicated at Time 2. As validation methods for
dynamic models with covariates are limited, additional simulation studies were conducted to support these findings.

Table 3] summarises the guessing (g), and slipping (s) parameters for each item across Time 1 and Time 2. Compared to
real-data analyses reported by [32], where guessing rates often exceeded 0.5 while slipping rates were often below 0.4,
the guessing and slipping parameters estimated in the current study were moderate. Specifically, guessing rates were
slightly higher at Time 2 than at Time 1, particularly for items involving both decoding and vocabulary skills (items 2,
3, and 6; see Table[3). Slipping rates showed small decreases over time for items requiring only one skill (items 1, 4,
and 5).

Table 3: Estimated Q-matrix, guessing (g), and slipping (s) parameters for each item at Time 1 and Time 2. Q-matrix
values indicate whether each item requires decoding (A1) and/or (As3) vocabulary skills. Bolded values in the table
highlight the maximum estimates of g and s across items.

It \ Time 1 \ Time 2
em
‘ A1 AQ g S ‘ Al AQ g S
1 1 0 0328 0248 1 0 0.354 0.232
2 1 0 0244 0.143| 1 1 0.323 0.149
3 1 0 0280 03511 1 0.287 0.311
4 |10 1 0.161 0336 0 1 0.334 0.302
5 0 1 0376 0344 0 1 0.313 0.317
6 |0 1 0118 0251 1 0.365 0.269

4.4 Identified Attribute Profiles, Initial Attribute Mastery and Attribute Transition with Covariates

Table [ presents the distribution and transitions of attribute profiles across two time points. At Time 1, approximately
one quarter of the students had not mastered either skill. By Time 2, only about 5% of the students remained in the
non-mastery group, with most transitioning to mastery of vocabulary alone or to mastery of both skills. The number of
students who mastered both skills at Time 2 was nearly twice that at Time 1. Students who had mastered at least one
skill at Time 1 were more likely to achieve mastery of the other skill or both skills by Time 2.

Table 4: Transition matrix of attribute profiles from Time 1 (rows) to Time 2 (columns) for 263 students. Each element
shows the number of students (proportion). Row sums represent Time 1 distributions; column sums represent Time 2
distributions. Profile labels: 00 = no mastery, 10 = decoding skill only, 01 = vocabulary skill only, 11 = mastery of both
skills.

Time 2 |  Totals
00 10 01 TR

00 12(4.563%) 3(1.141%) 38(14.449%) 21(7.985%) |74(28.136%)
Time 1 10 1(0.380%) 1(0.380%) 17(6.464%)  25(9.506%) |44(16.730%)
01 1(0.380%) 1(0.380%) 46(17.490%) 37(14.068%) |85(32.319%)
11 1(0.380%) 2(0.760%) 16(6.084%) 41(15.589%) |60(22.814%)

Totals 15(5.703%) 7(2.662%) 117(44.487%) 124(47.148%) | 263(100%)

TableE]presents the posterior means of odds ratios for initial mastery (/3,) and transition probabilities (7o and 1),
estimated separately by attribute K. Covariates included six log-based variables, four demographics, and two game and
learning characteristics listed in Tables[T]and [2] Covariates without statistically significant effects are not shown the
table. All odds ratios and confidence intervals for all covariates are provided in supplementary material C. A sparsity
criterion was applied following [17], whereby odds ratios with 95% credible intervals including 1 were considered
1nactive.

For initial mastery (5.), more reattempts on decoding game were negatively associated with mastery in the decoding
(K=1), while a larger number of levels mastered showed a strong positive association. For vocabulary (K=2), greater
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level mastery and longer response times were positively associated with mastery, and boys were less likely than girls to
achieve mastery. For transition probabilities, significant effects were also observed. For the transition from non-mastery
to mastery (7o1), more reattempts were negatively associated with achieving mastery in decoding, while greater level
mastery increased the likelihood of transitioning. Boys, compared to girls, were less likely to transition to mastery of
vocabulary skill. For the transition from mastery to non-mastery (7y19), students performing well below benchmark in
initial literacy ability were more likely to lose mastery compared to those at benchmark. In the absence of covariate
effects, the probability of losing mastery was low.

Table 5: Significant covariates for 5, (initial mastery), vo1, and 19 by attribute (K). Only covariates with statistically
significant odds ratios (OR) are shown. Note: K = attribute; (Intercept) = model intercept; NRA = number of reattempts;
NLM = number of levels mastered; RT = response time; Gender = female (0), male (1); ILA = initial literacy ability
(at benchmark: reference level); WB = well below benchmark; Decoding = decoding game; Vocabulary = vocabulary
game.

Initial mastery Transition probabilities
B Yo1 Y10
Covariates OR |K Covariates OR | K Covariates OR

NRA Decoding 0.085 | 1 NRA Decoding 0.363| 1 ILA-WB 6.003
NLM Decoding 15.281| 1 NLM Decoding 4.603| 2 (Intercept) 0.158
NLM Vocabulary 19.328 | 2 Gender 0.582
RT Vocabulary  3.808

Gender 0.373

RN =

5 Simulation Study

The main objectives of this simulation study were to assess the model performance under various conditions, and to
evaluate the model’s robustness under settings that can be present within the area of application. We designed 18
simulation settings across three experimental factors: sample size (), the number of items (J), and Q-matrix sparsity
level (6).

5.1 Simulation Design and Validations

Inspired by our empirical study, we considered two tests administered at two time points (1" = 2), each measuring two
binary attributes (K = 2). Students responded to the same number of items at each time point, and the total number of

items across both tests was denoted by J = Ele J¢. The six covariates were generated from a multivariate standard
normal distribution, Z ~ N (0, Is), where I is the 6 x 6 identity matrix. These covariates were designed to influence
both initial mastery and attribute transitions across time (Equation @H6). Following [32]], the guessing and slipping
parameters were generated from Uniform(0.05, 0.20), while all regression coefficients in the attribute and transition
models (i.e., Bz, Y01, and 1) were assigned using estimates obtained from our empirical analysis to simulate the data.

The true @Q-matrices used under each simulation condition are provided in supplementary material D. We considered
both a sparse scenario and a dense scenario. To ensure that the identifiability conditions were not violated, we avoided
using extensively dense (Q-matrices [20} 41]]. The density level adopted in the dense condition was close to the upper
limit reported in prior studies [19, 23] [26]. The sparse (J-matrix contains approximately 58—61% nonzero entries, and
the dense @-matrix includes about 67% nonzero entries. Overall recovery accuracy was defined as the proportion
of correctly classified (Q-matrix entries. For comparison, simulation results assuming a known ()-matrix for a small
sample size (N=200) are provided in supplementary material E.

We assessed model performance using both parameter estimation accuracy and classification accuracy. For item
parameters and regression coefficients in the attribute and transition models, we computed the mean bias (MBias) and
root mean square error (RMSE) across replications, given by

R
MBias = Z 5") —p), RMSE =

R
Z p(") —

:U\
:U\

where p is the true parameter and R is the number of replications.
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The classification accuracy of students’ attribute profiles, in terms of each individual attribute at each time point, was
calculated as follows:

N
1 Z .
i=1

where N is the number of students, K is the number of attributes, c; represents the true attribute profile of student ¢,
&; denotes its estimated counterpart, and I(+) is the indicator function, taking the value 1 if the condition holds and 0
otherwise. We further evaluated the recovery of the (J-matrix by comparing the estimated and true ()-matrix entries
across simulation replications. Specifically, we computed the false positive rate, false negative rate, and classification
accuracy based on true positive and true negative for each element of the -matrix.

5.2 Results

We conducted 25 replications per simulation condition, using three independent Markov chains of 20,000 iterations
each, with different initial values. Following [51]], convergence was assessed using the potential scale reduction factor

(R). After discarding the first 10,000 burn-in iterations, all maximum values of R remained below 1.1, indicating
acceptable convergence.

For the sparsity prior on the (J-matrix, the prior mean QLW matched the true sparsity level (proportion of non-zero
elements), and the concentration o + (3 was scaled with the number of items to stabilise estimation (20, 70, and 120
for J = 6, 18, and 30, respectively). Sensitivity analyses further varied the prior specifications, and recovery of the
(-matrix and attribute classifications showed little difference (see supplementary material F), confirming the robustness

of the model to reasonable prior misspecification.

Table [6] presents attribute agreement rates (AARs) across conditions. Across all combinations of N and .J;, accuracy
at Time 2 was consistently higher than at Time 1, except for small sample (N=200), indicating improved attribute
recovery over time. For a fixed IV, AARs tended to increase slightly as J; increased. Nevertheless, accuracy remained
high in all conditions (AARs > 0.913). As sample size increased, dense () matrices showed clearer gains, with AARs
at Time 2 reaching up to 1.000 for N = 600, J; = 30.

Table 6: Recovery of attribute profiles measured by attribute agreement rates (AAR; and AAR>) across time points (7°),
under varying sparsity levels (), sample sizes (/V), and number of items (J;). Bold values indicate the smallest AARs
for each attribute across all conditions.

| Sparse @ | Dense @
N J, T|AAR; AAR;|AAR; AAR,

200 6 10956 0928 | 0.949 0.924
210927 0.953|0.930 0913

18 10.994 0.994 | 0.990 0.993
210996 0.994 | 0.995 0.992

30 1]0.999 1.000 | 0.998 0.999
210999 1.000 | 0.999 0.999

400 6 10970 0.956 | 0.953 0.958
210941 0.961 | 0.941 0.923

18 1]0.996 0.996 | 0.993 0.993
210.996 0.996 | 0.995 0.992

30 1| 1.000 1.000 | 0.999 1.000
210999 1.000 | 0.999 0.999

600 6 10972 0947 |0.955 0.955
210930 0.956 | 0.941 0.935

18 1]0.997 0.997 | 0.994 0.995
210996 0.996 | 0.994 0.993

30 1| 1.000 0.999 | 0.999 1.000

2| 1.000 0.999 | 0.999 0.999

As shown in Table[/] Q-matrix recovery accuracy was consistently higher at Time 2 than Time 1 across all conditions.
When controlling for sample size, increasing the number of items slightly reduced accuracy, although classification
remained generally high. Under denser (Q-matrices, larger sample sizes yielded higher accuracy.

11
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Table 7: Recovery of Q-matrix across time points (7°) under different values of sparsity (6), sample size (), and
number of items (J;). Bold values indicate the highest scores per column. FPR = FP / [FP + TN], FNR = FN / [TP +
FN], Acc. = (TP + TN) / (TP + FP + FN + TN). Bold values indicate the highest scores per column.

\ Sparse \ Dense @

N J; T‘ FPR FNR Acc. ‘ FPR FNR Acc.
200 6 1[0.000 0.120 0.925]0.000 0.042 0.969
2 10.000 0.040 0.975|0.000 0.083 0.938

18 1]0.000 0.067 0.957|0.000 0.020 0.986

2 10.000 0.050 0.968 |0.000 0.035 0.975

30 1]0.000 0.117 0.927]0.000 0.070 0.951

2 10.000 0.108 0.932(0.000 0.018 0.987

400 6 1{0.000 0.080 0.950|0.000 0.083 0.938
2 10.000 0.040 0.9750.000 0.000 1.000

18 1/0.000 0.111 0.929|0.000 0.020 0.986

2 10.000 0.039 0.975(0.000 0.010 0.993

30 1{0.000 0.104 0.935]0.000 0.044 0.969

2 10.000 0.092 0.943|0.000 0.018 0.987

600 6 1(0.000 0.000 1.000|0.000 0.000 1.000
2/0.000 0.000 1.000|0.000 0.042 0.969

18 1/0.000 0.106 0.932|0.000 0.015 0.989

2 10.000 0.039 0.975|0.000 0.030 0.979

30 1]0.000 0.121 0.924]0.000 0.026 0.982

2 10.000 0.108 0.932{0.000 0.018 0.987

Table [§] summarises the estimation accuracy of guessing and slipping parameters (g;; and s;;) under the sparse Q.
Overall, bias was minimal, with RMSEs for g;; generally below 0.035 and for s;; below 0.075, except in the small-
sample condition (N = 200, J; = 6). Accuracy improved at Time 2 in most cases, and larger sample sizes yielded more
stable estimates, especially under sparse (). Results for the dense ()-matrix are presented in supplementary material G,
where bias remained minimal across all conditions (g;; < 0.035, s;; < 0.073). Item-level RMSE comparisons for g;;
and s;; under different simulation conditions are reported in supplementary material H.

Table 8: Estimation accuracy of item parameters (g;; and s;;), evaluated by mean bias (MBias), and root mean square
error (RMSE), under sparse ()-matrix, sample sizes (/V), and number of items (J;). Bold values indicate the highest

estimates across conditions.

Sparsity of Q@ N J; T'| gmMBias JRMSE | SMBias SRMSE
Sparse @ 200 6 1]0.037 0.072| 0.065 0.115
2 10.006 0.027 |-0.002 0.041

18 1]0.004 0.027 | 0.012 0.057

2 10.003 0.033|0.001 0.036

30 11{-0.000 0.026 | 0.004 0.050

2 (-0.000 0.031 | 0.004 0.037

400 6 1]0.017 0.048 | 0.031 0.071

2 1-0.005 0.023 |-0.005 0.027

18 1]0.001 0.022 | 0.004 0.042

2 1-0.003 0.023 |-0.002 0.026

30 11{-0.005 0.021 |[-0.003 0.034

2 1-0.001 0.023|-0.002 0.022

600 6 1 [-0.000 0.019|-0.003 0.027

2 1-0.013 0.031 |-0.002 0.025

18 1{-0.002 0.017 | 0.002 0.039

2 1-0.001 0.018 |-0.003 0.019

30 11(-0.004 0.016 [-0.002 0.033

2 (-0.003 0.017 |-0.004 0.021

12
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Table E]presents the estimation accuracy for initial mastery probabilities (3y,x) and covariate effects (37 ;). For both
attributes, the estimation bias tended to decrease slightly as sample size (/V) or the number of items (J;) increased.
Similarly patterns are evident in Table[I0] the bias in estimating covariate effects on attribute transitions was generally
small across conditions.

Table 9: Estimation accuracy of initial covariate effects on attribute (k) mastery (3), evaluated by mean bias (MBias),
and root mean square error (RMSE), under varying sparsity levels (6), sample sizes (N), and number of items (J).
Each f;, . quantifies the impact of covariate z on the initial mastery probability of attribute k at time 7" = 1. Bold
values indicate the largest absolute MBias and the largest RMSE across conditions.

\ Sparse @ \ Dense Q

N J; Metric| Bo1 fo2 Bzi Bz2 | Boa  Poz Bzi Bze

200 6 Bias | 0.077 0.374 -0.002 -0.059| 0.038 -0.027 0.013 -0.027
RMSE | 0.192 0.404 0.247 0.317 | 0.154 0.088 0.218 0.283

18 Bias |-0.076 -0.042 -0.017 -0.002 [-0.063 -0.040 -0.014 -0.003
RMSE | 0.110 0.131 0.167 0.185 | 0.107 0.132 0.167 0.190

30 Bias | 0.021 -0.047 0.008 0.028 | 0.018 -0.053 0.007 0.028
RMSE | 0.135 0.180 0.169 0.181 | 0.136 0.178 0.192 0.198

400 6 Bias | 0.015 0.204 -0.030 0.019 |-0.017 0.104 -0.053 0.009
RMSE | 0.132 0.226 0.126 0.240 | 0.074 0.138 0.112 0.187

18 Bias | 0.043 0.020 0.009 0.029 | 0.055 0.022 0.007 0.031
RMSE | 0.117 0.071 0.122 0.165 | 0.124 0.052 0.100 0.150

30 Bias |-0.073 -0.016 -0.009 0.003 |-0.070 -0.015 -0.009 0.002
RMSE | 0.135 0.096 0.165 0.140 | 0.132 0.098 0.166 0.139

600 6 Bias | 0.062 0.053 0.020 -0.005|0.082 0.027 0.017 -0.007
RMSE | 0.077 0.092 0.105 0.115 | 0.095 0.087 0.121 0.109

18 Bias | 0.016 -0.003 -0.004 -0.013|0.029 -0.011 0.001 -0.016
RMSE | 0.088 0.072 0.130 0.125 | 0.102 0.088 0.116 0.106

30 Bias |-0.038 -0.070 0.008 0.032 |-0.039 -0.067 0.008 0.031
RMSE | 0.101 0.099 0.122 0.141 | 0.101 0.097 0.122 0.140

6 Discussions and Future Directions

This study introduces a temporal cognitive diagnostic modeling framework for analysing student learning from
digital educational tools. Application of the framework to log data from a research-informed digital reading program
demonstrates its flexibility, interpretability, and alignment with theoretical models of early reading development.
Simulation studies further confirm the accuracy and robustness of the proposed model across various conditions.

In this study, we examined decoding and vocabulary as two subcomponents of the critical constructs proposed in
the Simple View of Reading [47]: word recognition and language comprehension, respectively. Decoding supports
the development of word recognition, while vocabulary supports language comprehension. These are theoretically
considered distinct constructs. Our findings reinforce this distinction: transitions from non-mastery to mastery within
each skill (decoding or vocabulary) followed expected developmental trajectories, and some students mastered one skill
without the other. The theoretical independence, together with our empirical observation that a substantial proportion of
students mastered only one of the two skills, justified the use of a non-compensatory modeling framework.

However, the estimation of the Q)-matrix for this specific dataset also revealed evidence of interrelations between word
recognition and vocabulary skills. Specifically, students appeared to require vocabulary knowledge to support their
performance in word recognition skill games, consistent with findings reported by [52]. Students who demonstrated
mastery in both skills may have acquired them in parallel or may have benefited from prior familiarity with the digital
learning environment. Log-based covariates and demographics contributed meaningfully to profile classification. Higher
achievement (i.e., more levels mastered), fewer reattempts, and faster response times were positively associated with
mastery, in line with prior evidence on the roles of practice and fluency in early literacy development [53}54]. Students
with weaker initial literacy skills were less likely to master decoding, possibly due to persistent challenges in acquiring
letter—sound correspondence. Furthermore, boys exhibited a lower likelihood of mastering vocabulary compared to
girls, consistent with previous findings on gender differences in vocabulary development [55]. By integrating multiple
log-derived behavioural indicators and individual characteristics, rather than relying solely on a single measure, our
modeling approach more effectively captures the dynamic, multidimensional nature of early reading development, thus
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Table 10: Estimation accuracy of covariate effects on attribute (k) transitions (v), including both mastery acquisition
(701) and loss of mastery (71¢), evaluated by mean bias (MBias), and root mean square error (RMSE). The results are
reported under varying 0, N, and J;. Each 91 1 and 7y10,x,. quantifies the impact of covariate ¢ on the probability of
attribute £ transitioning between states from time 7" = 1 to 7" = 2. Bold values indicate the largest absolute MBias and
the largest RMSE across conditions.

\ Sparse \ Dense @

N J; Metric| 01,1 Yo12 7101 7102 | Y11 Yor2 Yol V10,2

200 6 Bias |-0.031 0.083 -0.029 -0.049| 0.002 0.027 -0.010 -0.130
RMSE | 0.264 0.272 0.320 0.416 | 0.223 0.283 0.307 0.532

18 Bias |-0.004 -0.034 -0.034 -0.070(-0.007 -0.032 -0.020 -0.073
RMSE | 0.204 0.197 0.367 0.293 | 0.201 0.198 0.363 0.290

30 Bias |-0.007 -0.037 0.029 -0.063-0.003 -0.029 0.031 -0.048
RMSE | 0.194 0.202 0.442 0.321 | 0.186 0.200 0.420 0.321

400 6 MBias |-0.019 0.055 -0.082 -0.041{-0.030 0.081 -0.082 -0.059
RMSE | 0.178 0.171 0.316 0.262 | 0.187 0.209 0.302 0.329

18 MBias |-0.009 0.016 -0.024 -0.051 [-0.008 0.020 -0.037 -0.046
RMSE | 0.146 0.126 0.232 0.218 | 0.147 0.135 0.237 0.218

30 MBias |-0.006 0.006 -0.024 -0.004|-0.006 0.005 -0.023 -0.005
RMSE | 0.133 0.138 0.259 0.223 | 0.134 0.138 0.258 0.225

600 6 MBias |-0.009 -0.023 0.032 -0.048| 0.013 -0.030 0.029 -0.069
RMSE | 0.146 0.121 0.220 0.208 | 0.128 0.136 0.203 0.189

18 MBias |-0.002 -0.001 -0.014 -0.016(-0.008 -0.001 -0.019 -0.025
RMSE | 0.096 0.095 0.197 0.199 | 0.096 0.096 0.192 0.201

30 MBias | 0.010 -0.003 0.030 -0.072| 0.009 -0.003 0.028 -0.071
RMSE | 0.093 0.106 0.173 0.254 | 0.093 0.109 0.173 0.252

better reflecting the complexity of real-world cognitive processes. Additionally, an important contribution of our study
relies in its ability to empirically validate theoretically specified item-skill mappings (Q-matrix). Thus, our approach
aligns with expert design while improving the robustness and validity of digital reading tools in practice.

In simulations, the proposed MCMC algorithm reliably recovered latent profiles, item-skill mapping (Q)-matrix), and
parameters across a range of conditions, supporting the model’s practical utility in real-world applications where the
(Q-matrix structure is unknown. Notably, (J-matrix recovery remained consistently high even under relatively small
designs (e.g., 200 students and 6 items), diverging from earlier recommendations (e.g., [21]; [32]]) and highlighting
the model’s robustness in recovering item—skill mappings from limited data. However, static validation methods such
as PVAF [50] appear less suited for dynamic models that incorporate covariates and attribute transitions. In contrast,
increases in sample size or item numbers—regardless of the sparsity of the () matrix—consistently improved parameter
recovery, in line with prior findings by [32] and [56]. Furthermore, our classification accuracy for attribute profiles
closely matched the accuracy of recovery the unknown parameters reported in [32], despite not assuming the ()-matrix
to be known. These results indicate that high accuracy can still be achieved even when the ()-matrix is estimated rather
than fixed.

Several promising directions emerge for extending the current modeling framework. First, our application focused
on time-invariant covariates to explain individual differences. Time-varying covariates could easily be incorporated
to capture dynamic influences on learning trajectories. Second, the model recovered meaningful item-—attribute
relationships under a known number of skills based on game structure. Future work could estimate the dimensionality of
skills using tools such as parallel analysis, supporting more flexible model specifications. Third, the individual attribute
profile was assumed to be fixed over a short observation window to demonstrate empirical applicability. Extending
the framework to longer-term or more frequent assessments could reveal detailed developmental patterns and detect
change points in learning. Fourth, the model assumed similarity in items taken across game levels. Introducing greater
item variation and modeling item-level heterogeneity could improve generalizability. Fifth, the proposed framework
highlights timing as an important factor influencing reading ability—one that has been linked to fluency in the literature.
Building on this, future work could extend the framework to accommodate polytomous skill states, such as partial
mastery or graded proficiency levels (e.g., fluency). Sixth, this study reflects the diversity of covariates commonly
available in digital settings, including both log-based (e.g., number of attempts, response time) and socio-demographic
(e.g., gender, ELL) variables. This suggests that future research could consider incorporating covariate selection
methods. Lastly, although decoding and vocabulary were modeled using a non-compensatory framework, many
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other skills learning contexts may involve compensatory or partially compensatory relationships. Extensions of this
framework to models such as deterministic input, noisy or gate (DINO) model [57], or the generalized DINA model
[50] could reveal diverse patterns of skill integration and individual differences.

7 Conclusion

This study presents a temporal cognitive diagnostic modeling framework designed for analysing student learning through
digital educational tools. By applying this framework to log files from a research-informed digital reading program, we
demonstrated its flexibility, interpretability, and strong alignment with established theoretical models of early reading
development. Simulation studies further confirmed the model’s accuracy and robustness in jointly estimating the
unknown item-skill mappings, latent attribute profiles, item parameters, and covariate effects across diverse conditions.
From a policy perspective, our approach supports educational initiatives such as ESSA, emphasising personalized
instruction and evidence-based digital tools. Practically, the ability to dynamically track student transitions between
non-mastery and mastery using response accuracy, log-derived behavioural indicators, and individual characteristics
reflects the multidimensional complexity of reading development in real-world settings. The capacity to identify
item-skill relationships solely from response data is an important contribution that can help educators to validate
targeted educational tools, monitor their effectiveness longitudinally, and support students’ reading development.
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11 Supplementary Material A

For sparsity in the -matrix,

Qi ~ Bernoulli(f),
6 ~ Beta(a, ),

o
a+f
To evaluate the sensitivity of model estimates to the prior specification of 6, we compared item parameters results from
the empirical analysis under varied concentration levels (a 4 ) in Table and varied priors mean (O%B) in Table
relative to the reference prior Beta(24, 6) used in the main analysis. Tables and summarises the changes in the
posterior means of the guessing (g) and slipping (s) parameters under alternative priors.

where the prior mean equals the non—zero proportion of the true -matrix and the concentration defined as o + 3.

Results showed that item parameters remained qualitatively unchanged across different prior means, supporting the
robustness of the proposed approach. Across all alternative settings, changes in the posterior means of g and s
parameters were generally less than 0.04, with most differences below 0.02. The sensitivity analysis indicates that the
choice of prior concentration and mean for § had minimal impact on the estimation of item parameters. The Beta(24, 6)
prior thus provides a reasonable balance between interpretability and flexibility for empirical applications.

Table 11: Alternative prior specifications for § with fixed means QL% = 0.8 and varying concentration (c + 53).
Prior Prior Mean Concentration Variance 95% Interval
Beta(24, 6) 0.8 30 0.0052  (0.65, 0.92)
Beta(8, 2) 0.8 10 0.0145 (0.55,0.93)
Beta(40, 10) 0.8 50 0.0031 (0.70, 0.90)

Table 12: Alternative prior specifications for § with fixed concentration (o + 5 = 30) and varying means —5—

a+p"
Prior Prior Mean Concentration Variance 95% Interval
Beta(24, 6) 0.8 30 0.0052 (0.65, 0.92)
Beta(21,9) 0.7 30 0.0067 (0.55, 0.85)
Beta(27, 3) 0.9 30 0.0031 (0.78, 0.96)
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Table 13: Posterior means of guessing (g) and slipping (s) parameters for each item at Time 1 and Time 2 under three
alternative Beta priors (concentration 10, 30, and 50) whereas fixed mean 0.8. Bold values indicate the highest estimates
across conditions.

Item \ Prior | Timel | Time?2
| |9 s | g s
Beta(24,6) |0.328 0.248]0.354 0.232
1 Beta(&?) 0.332 0.254|0.356 0.229
Beta(40,10) [0.329 0.252]0.353 0.231
Beta(24,6) |0.244 0.143]0.323 0.149
2 Beta(8,2) 0.229 0.153]0.305 0.135
Beta(40,10) | 0.237 0.148 |0.310 0.146
Beta(24,6) [0.280 0.352]0.287 0.311
3 [Beta(s,2) |0.242 0.359(0.273 0.300
Beta(40,10) [ 0.264 0.356|0.285 0.307
Beta(24,6) 0.161 0.336|0.334 0.302
4 |Beta(8,2) 0.148 0.34410.350 0.295
Beta(40, 10) | 0.156 0.339 |0.336 0.301
Beta(24,6) 0.376 0.34410.313 0.317
5 |Beta(8,2) 0.379 0.346|0.281 0.337
Beta(40, 10) 0.377 0.34510.307 0.320
Beta(24,6) 0.118 0.256]0.365 0.269
6 |Beta(8,2) 0.113 0.259|0.330 0.282
Beta(40, 10) 0.115 0.25710.363 0.270

Table 14: Posterior means of guessing (g) and slipping (s) parameters for each item at Time 1 and Time 2 under three
alternative Beta priors (mean 0.7, 0.8, and 0.9; concentration fixed at 30). Bold values indicate the highest estimates
across conditions.

Item‘Prior | Timel | Time?2
| |9 s | g s
Beta(24,6) 0.328 0.24810.354 0.232
1 |Beta(21,9)|0.329 0.246|0.353 0.238
Beta(??, 3) 0.330 0.251(0.348 0.242
Beta(24,6) 0.244 0.14310.323 0.149
2 |Beta(21,9)|0.232 0.143]0.315 0.135
Beta(27,3) | 0.267 0.150|0.316 0.152
Beta(24,6) |0.280 0.352(0.287 0.311
3 Beta(21,9) 0.269 0.359(0.281 0.300
Beta(27,3) [0.254 0.351|0.284 0311
Beta(24,6) |0.161 0.336]0.334 0.302
4 Beta(21,9) 0.153 0.340|0.351 0.287
Beta(27,3) | 0.155 0.341|0.348 0.291
Beta(24,6) |0.376 0.344|0.313 0.317
5 Beta(21,9) 0.378 0.341(0.316 0.322
Beta(27,3) |0.374 0.344|0.342 0.309
Beta(24,6) |0.118 0.256]0.365 0.269
6 Beta(21,9) 0.123 0.266|0.341 0.279
Beta(27,3) [0.119 0.274|0.360 0.269
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12 Supplementary Material B

The exploratory data analysis in this section identifies and visualizes the ten most frequent three levels that students
completed in each game and year. These panels highlight the variety of levels engaged, driven by differences in students’
initial starting points and in-game progression. Panels A and B display the top ten combinations from decoding game
(Years 1 and 2), while Panels C and D show the corresponding results for vocabulary game (Years 1 and 2).

Figure 3: Top ten three-level combinations engaged by students in each game and year. For example, panel A shows the
most frequent level sequences for decoding game in Year 1. Each bar represents the number of students who completed
the corresponding three-level combination.
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13 Supplementary Material C

The posterior means and 95% confidence intervals (CIs) of the odds ratios (ORs) for 3, (initial mastery) by attribute
(K), as well as the transition probabilities vy; and v, are reported in Tables
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14 Supplementary Material D

The true Q-matrices are presented under different levels of sparsity and varying numbers of items in Tables [I8H20]
Each @Q-matrix assumes K = 2 latent attributes and was held fixed across all simulation replicates.

Table 18: True @Q-matrices for J; = 6 under sparse (left) and dense (right) attribute patterns.

| Sparse Matrix | Dense Matrix
| Time 1 | Time 2 | Time 1 | Time 2
| A1 As|Ar Ax| A Ay | A Ay

Item

1 1 0|0 1|1 0]0 1
210 11 O0jO0 1|1 O
311 00 1|1 0|0 1
4 /0 1}]1 0|0 1|1 O
5|1 0|0 1|1 1|1 1
6 |1 1|1 1|1 1|1 1

Table 19: True Q-matrices for J; = 18 under sparse (left) and dense (right) attribute patterns.

| Sparse Matrix | Dense Matrix
| Time 1 | Time 2 | Time 1 | Time 2
| A1 As|Ar Ax|Ar Ay A Ay

Item

1 1 0|0 1|1 0]0 1
210 11 00 1|1 O
3 ]1 0|0 1|1 0]0 1
4 /0 170 10 1[0 1
511 0|0 1|1 00 1
6 |0 1|0 1]0 1|0 1
711 0|0 1|1 0|0 1
&80 1|0 170 1|1 O
911 0|1 o1 O|1 O
wfo 1|1 o0}j0 1|1 O
1mj1r ofj1 of1r o1 O
20 1|1 0j0 1|1 O
31 0|1 Of1 1|1 1
410 1|1 O0}1 1|1 1
571 1|1 1|1 1]1 1
6 (1 1|1 1)1 1|1 1
7|1 1|1 1}]1 1]1 1
(1 1|1 1]1 1|1 1
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Table 20: True ()-matrices for J; = 30 under sparse (left) and dense (right) attribute patterns.

Item

| Sparse Matrix | Dense Matrix

| Time 1 | Time 2 | Time 1 | Time 2

| Ay As| Ay As| Ay As| Ay A
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Table 21: Average Attribute Recovery (AAR) across different number of items.

15 Supplementary Material E

This section gives the simulation results when ()-matrix is known to show our recovery of parameters did not lost
accuracy brings with (Q-matrix is unknown. The attribute profile classification accuracy is provided in Table
Estimation accuracy of item parameters (g;; and s;;), initial covariate effects on attribute mastery (/) and attribute
acquisition (vo1) and attribute lossing (710) are given in Tables 22H24]

N J AARTIKI AARTI K2 AART2KI1 AART2K2

200 6
200 18
200 30

0.998 0.993 0.993
1.000 1.000 1.000
1.000 1.000 1.000

0.999

1.000
1.000

Table 22: RMSE and bias for guessing (g) and slipping (s) parameters.

N J Measure g (T1)

g (T2) s(T1) s(T2)

Bias 0.029
2000 6 pMSE  0.031
Bias 0.030
200 18 oMSE  0.032
Bias 0.029
200 30 pMSE 0,031

0.031 0.034 0.032
0.032 0.035 0.034
0.032 0.034 0.032
0.034 0.036 0.034
0.030 0.039 0.035
0.032 0.041 0.038

Table 23: Average bias of 3 parameters.

N J pBo Bias (K1) By Bias (K2) Bz Bias (K1) [z Bias (K2)
200 6 -0.027 -0.052 0.019 0.029
200 18 -0.077 -0.026 -0.067 0.039
200 30 -0.011 0.065 -0.065 0.011

Table 24: Average bias of transition parameters g1 and 7yi¢.

N J 701 Bias (K1) o1 Bias (K2) ~1¢ Bias (K1) =19 Bias (K2)
200 6 0.031 0.138 0.353 -0.165
200 18 -0.052 0.086 0.414 -0.189
200 30 0.012 0.100 0.303 -0.219
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For sparsity in the -matrix,

Qi ~ Bernoulli(f),
0 ~ Beta(a, f),

oF 5 equals the non—zero proportion of the true ()-matrix and the concentration defined as o + 3.

We examined the robustness of the model performance to alternative prior specifications for 6, the sparsity parameter of
the (Q-matrix, under the setting with 6 items with 200 users. Specifically, we varied the prior means (ﬁ) at0.5, 0.7,

and 0.9 and separately varied the concentration levels (a + ) at 20, 40, and 60.

Across 25 replications under each prior condition, we assessed the recovery of the (Q-matrix, the bias in the posterior
means of item parameters (g and s), and the attribute classification accuracy (Tables[25]and 26). Results showed that the
changes in posterior estimates remained small across different prior settings, with absolute biases for g and s parameters
generally below 0.04. The (Q-matrix recovery rates ranged from 75% to 100%, and the attribute-level accuracy rates
exceeded 84% in most cases. These findings demonstrate that the model’s estimation of ()-matrix, item parameters, and
attribute profiles was robust to reasonable prior misspecification.

Table 25: Q-matrix recovery and parameter bias by varying priors.
Note: PriMean = Prior mean ( a%_ﬂ ); Conc. = Concentration (o + 3); g = guessing parameter; s = slipping parameter;

Q acc. = Q-matrix accuracy. Bold values indicate the highest accuracy and minimum bias across conditions.

Prior \ Time 1 \ Time 2
PriMean Conc. Beta(a | Qacc.(%) gBias  SBias | Q acc.(%)  gBias  SBias

5)
0.5 20 Beta(lO 10)| 86.100 0.033 0.037| 82.200 0.011 0.024
0.5 40 Beta(20,20)| 91.700 -0.000 0.030| 86.100 -0.002 0.021
0.5 60 Beta(30,30)| 97.200 -0.000 0.046| 100.000 -0.020 0.017

)

)

0.7 20 Beta(12,8) | 94.400 0.001 0.014| 91.700 0.008 -0.002

0.7 40 Beta(24,16)| 100.000 0.007 0.007| 100.000 0.005 0.007

0.7 60 Beta(36 24)| 100.000 0.006 0.016| 97.200 -0.005 0.019

0.9 20 Beta(18,2) | 94.400 0.008 0.065| 97.200 0.031 0.070

0.9 40 Beta(36,4) | 100.000 0.017 0.107| 100.000 0.043 -0.009
6

0.9 60 Beta(54,6) | 97.200 0.001 0.037| 97.200 0.029 0.040

Table 26: Attribute-level accuracy rate (AAR) by by varying priors.
Note: PriMean = Prior mean (ﬁ); Conc. = Concentration (o + 3); Tl = Time 1; T2 = Time 2; Al = Attribute 1; A2

= Attribute 2. Bold values indicate the highest estimates across conditions.
Prior \ AAR (%)
PriMean Conc. Beta(a | TI-A1 TI-A2 T2-Al T2-A2

5)
0.5 20 Beta(lO 10) [96.500 95.300 92.500 94.800
0.5 40 Beta(20,20)|97.200 95.200 94.500 92.700
0.5 60 Beta(30,30)|96.800 93.500 92.500 95.500

8)

6)

4)

0.7 20 Beta(12, 97.300 92.000 93.000 95.500
0.7 40 Beta(24,16)|96.800 96.800 90.800 94.300
0.7 60 Beta(36,24)(95.300 93.800 93.200 96.300
0.9 20 Beta(18,2) |94.700 92.200 92.500 94.500
0.9 40 Beta(36,4) |96.500 91.300 90.000 93.000
0.9 60 Beta(54,6) |95.700 94.000 92.000 89.800
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Table[27]includes the estimation bias of item parameters for dense (Q-matrix.

Table 27: Estimation accuracy of item parameters (g;; and s;;), evaluated by mean bias (MBias), and root mean square
error (RMSE), under dense (-matrix, sample sizes (), and number of items (J;). Bold values indicate the highest

absolute estimates across conditions.

Sparsity of @ N J; T'| gmBias RMSE | SMBias SRMSE
Dense @ 200 6 1]0.004 0.025] 0.035 0.073
210.007 0.036 | -0.008 0.044

18 1]0.005 0.027 | 0.016 0.061

210.003 0.033| 0.003 0.037

30 1]0.003 0.028|0.011 0.061

210.001 0.031] 0.006 0.037

400 6 1 |-0.001 0.017 | 0.015 0.053

2 [-0.007 0.024 | 0.006 0.036

18 11]0.001 0.019]| 0.004 0.041

2 1-0.003 0.022 | 0.000 0.027

30 11(-0.003 0.020| 0.001 0.039

21 0.000 0.023| 0.000 0.024

600 6 110.003 0.016|-0.003 0.029

2 1-0.008 0.028 | 0.002 0.025

18 1(-0.002 0.014 | 0.003 0.037

2 1-0.000 0.017 |-0.002 0.019

30 11(-0.002 0.016| 0.000 0.034

2 1-0.001 0.017 |-0.002 0.022
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The detailed item parameters (g and s) shown in Figure 4 showed the RMSD root mean of squres and Mbias (mean
bias) for item parameters for each item.

Panels A and B display the item-level RMSE of guessing parameters from two test conditions: (N = 200, J = 6) and
(N =600, J = 30), respectively. Panels C and D show the corresponding RMSEs for slipping parameters under the
same conditions. Triangular and square markers represent time points 7' = 1 and T' = 2, respectively.

Figure 4: Root Mean Squared Errors (RMSE) of item-level guessing and slipping parameter estimates. Panels A and B
correspond to the guessing parameters under conditions with (N = 200, J = 6) and (N = 600, J = 30), respectively.
Panels C and D show the slipping parameters under the same conditions.
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Figure [5] compares the item-level root mean squared errors (RMSE) of the estimated guessing and slipping parameters
under two different prior settings for 6 (0.5 and 0.7), with fixed test conditions (N = 600, J = 30). Panels A and B
present the RMSEs for guessing parameters, while Panels C and D present the results for slipping parameters. The
triangular and square markers indicate estimates at time points 7' = 1 and T = 2, respectively. The comparison shows
how prior informativeness impacts parameter recovery, particularly in terms of consistency across items and time points.

19 Appendix

See the file Game content for the full table of participant content codes across 12 items.
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Figure 5: RMSE of item-level guessing and slipping parameter estimates under different 6 values. Panels A and B
show guessing RMSEs for # = 0.5 and § = 0.7, respectively. Panels C and D show slipping RMSEs under the same
conditions.
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